metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$)copper(I)]- μ_2 -iodido]

Yisheng Yang,^a Wenxiang Chai,^a* Li Song^b and Kangying Shu^a

^aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018. People's Republic of China, and ^bDepartment of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang University of Science and Technology, Hangzhou 310018, People's Republic of China

Correspondence e-mail: wxchai_cm@yahoo.com.cn

Received 7 October 2010; accepted 23 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.028; wR factor = 0.056; data-to-parameter ratio = 17.7.

The solvothermal reaction of copper(I) iodide and 1,10phenanthroline (phen) in ethanol yielded the title polymeric compound, $[CuI(C_{12}H_8N_2)]_n$. The asymmetric unit comprises one Cu⁺ cation, one I⁻ anion and one phen ligand. Each Cu⁺ cation is in a distorted tetrahedral coordination by two iodide anions and two N atoms from a bidentate chelating phen ligand. The Cu⁺ cations are bridged through the iodide anions, leading to a zigzag chain structure extending parallel to [100]. There are $\pi - \pi$ interactions among adjacent phen ligands of one chain [centroid–centroid distance = 3.693 (3) Å].

Related literature

For other copper(I)-iodide complexes with 1,10-phenanthroline as a co-ligand, see: Healy et al. (1985); Yu et al. (2001, 2002, 2004); Zhou et al. (2005); Zhang et al. (2008).

Experimental

Crystal data

 $[CuI(C_{12}H_8N_2)]$ $M_r = 370.64$ Orthorhombic, $P2_12_12_1$ a = 4.1664 (5) Å b = 10.4621 (11) Åc = 25.518 (4) Å

Data collection

Rigaku R-AXIS RAPID 8582 measured reflections diffractometer 2567 independent reflections Absorption correction: multi-scan 2380 reflections with $I > 2\sigma(I)$ (ABSCOR: Higashi, 1995) $R_{\rm int} = 0.027$ $T_{\min} = 0.290, \ T_{\max} = 0.799$

Refinement

$\Delta \rho_{\rm max} = 0.94 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$
Absolute structure: Flack (1983),
1018 Friedel pairs
Flack parameter: 0.05 (3)

V = 1112.3 (2) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.10 \times 0.05 \text{ mm}$

 $\mu = 4.71 \text{ mm}^-$

T = 293 K

Z = 4

Table 1 Selected bond lengths (Å).

I1-Cu1	2.5895 (6)	Cu1-N2	2.100 (3)
I1-Cu1 ⁱ	2.6030 (6)	Cu1-N1	2.110 (3)

Symmetry code: (i) x + 1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful for financial support from the National Natural Science Foundation of China (project No. 20803070) and the Natural Science Foundation of Zhejiang Province (project No. Y4100610).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2280).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Healy, P. C., Pakawatchai, C. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 2531-2539.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yu, J. H., Lü, Z. L., Xu, J. Q., Bie, H. Y., Lu, J. & Zhang, X. (2004). New J. Chem. 28, 940-945.
- Yu, J. H., Shi, Z., Xu, J. Q., Chu, D. Q., Jin, W. J., Ding, H., Hua, J., Xu, J. N., Cui, X. B., Wang, T. G., Zhang, L. J., Li, C. B. & Zeng, Q. X. (2001). Pol. J. Chem. 75, 1785-1789.
- Yu, J. H., Xu, J. Q., Han, L., Wang, T. G., Shi, Z., Jing, W. J., Ding, H., Xu, J. N., Jia, H. B. & Hua, J. (2002). Chin. J. Chem. 20, 851-857.
- Zhang, S., Cao, Y. N., Zhang, H. H., Chai, X. C., Chen, Y. P. & Sun, R. Q. (2008). J. Solid State Chem. 181, 3327-3336.

Zhou, X.-P., Li, D. & Ng, S. W. (2005). Acta Cryst. E61, m654-m655.

supplementary materials

Acta Cryst. (2010). E66, m1486 [doi:10.1107/S1600536810043205]

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$)copper(I)]- μ_2 -iodido]

Y. Yang, W. Chai, L. Song and K. Shu

Comment

Recently, there have been a number of reports of copper(I)-iodide complexes with 1,10-phenanthroline (phen) as a coligand. Among them, almost all complexes are disctete molecules (Healy *et al.*, 1985; Yu *et al.*, 2001; Yu *et al.*, 2002; Yu *et al.*, 2004; Zhou *et al.*, 2005; Zhang *et al.*, 2008) except two complexes characterized as polymeric structure (Zhang *et al.*, 2008). We have synthesised the polymeric title complex [Cu(phen)I]_n (I) (Fig.1). It is worthy of note that compound I crystallizes in a noncentrosymmetric space group of $P2_12_12_1$, while the other copper(I)-iodide complexes with phen all crystallise in centrosymmetric space groups. The asymmetric unit contains one Cu⁺ cation, one I⁻ anion and one phen ligand. Each Cu⁺ cation is tetrahedrally coordinated by two iodide anion and two nitrogen atoms from a bidentate chelating phen ligand. The Cu⁺ cations are bridged through the iodide anions, leading to a zigzag chain structure. The Cu—I bond lengths are 2.5895 (6) and 2.6030 (6) Å, which are similar to that found in other copper(I)-iodide complexes. There are π - π interactions between adjacent phen ligands of one chain. The phen skeletons are arranged in a perfect parallel fashion with centroid-centroid distance of 3.693 (3) Å (from two adjacent C4/C5/C6/C7/C8/C9 ring and C1A/C2A/C3A/C4A/C5A/N1A ring, symmetry code A: x - 1, y, z).

Experimental

All chemicals were obtained from commercial sources and were used as received. The title compound was handily synthesized by a solvothermal reaction from CuI and phen. A mixture of Cu^{I} (76 mg, 0.4 mmol) and phen.H₂O (80 mg, 0.4 mmol) in 12 mL alcohol was put into a Parr Teflon-lined autoclave (23 mL) and heated at 393 K for 3 days. After cooling down to room temperature, yellow crystals of compound I were obtained.

Refinement

The structure was solved using direct methods and refined by full-matrix least-squares techniques. All non-hydrogen atoms were assigned anisotropic displacement parameters in the refinement. All hydrogen atoms were added at calculated positions and refined using a riding model. (Sheldrick, 2008).

Figures

Fig. 1. Structure and labelling of the title compound, with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii. Symmetry code A: x - 1, y, z.

Fig. 2. The chain structure constructed from Cu(phen)I unit.

Fig. 3. The packing diagram viewed along the a-direction.

$catena-Poly[[(1,10-phenanthroline-\kappa^2N,N')copper(I)]- \mu_2-iodido]$

Crystal data	
$[CuI(C_{12}H_8N_2)]$	F(000) = 704
$M_r = 370.64$	$D_{\rm x} = 2.213 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2969 reflections
a = 4.1664 (5) Å	$\theta = 2.1 - 27.5^{\circ}$
b = 10.4621 (11) Å	$\mu = 4.71 \text{ mm}^{-1}$
c = 25.518 (4) Å	<i>T</i> = 293 K
$V = 1112.3 (2) \text{ Å}^3$	Prism, yellow
Z = 4	$0.35\times0.10\times0.05~mm$

Data collection

Rigaku R-AXIS RAPID diffractometer	2567 independent reflections
Radiation source: fine-focus sealed tube	2380 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.027$
Detector resolution: 14.6306 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
CCD_Profile_fitting scans	$h = -5 \rightarrow 5$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -13 \rightarrow 13$
$T_{\min} = 0.290, \ T_{\max} = 0.799$	$l = -33 \rightarrow 31$
8582 measured reflections	

Refine	ement
./	

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.056$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0192P)^{2} + 0.4704P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{\text{max}} = 0.001$
2567 reflections	$\Delta \rho_{max} = 0.94 \text{ e } \text{\AA}^{-3}$
145 parameters	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 1020 Friedel pairs?
Primary atom site location: structure-invariant direct	Electropromotor: 0.05 (2)

Primary atom site location: structure-invariant direct methods Flack parameter: 0.05 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
I1	0.66039 (6)	0.42090 (2)	0.117804 (11)	0.03947 (8)
Cu1	0.16241 (14)	0.27290 (4)	0.12007 (2)	0.03758 (12)
N1	0.3102 (9)	0.1092 (3)	0.07823 (11)	0.0338 (7)
N2	-0.0053 (9)	0.1283 (3)	0.17018 (13)	0.0341 (7)
C5	0.2334 (9)	-0.0008 (4)	0.10317 (14)	0.0315 (9)
C12	-0.1751 (12)	0.1378 (4)	0.21386 (15)	0.0436 (10)
H12	-0.2174	0.2191	0.2269	0.052*
C9	0.0515 (10)	0.0084 (4)	0.15161 (15)	0.0315 (9)
C4	0.3219 (12)	-0.1225 (4)	0.08441 (16)	0.0420 (10)
C1	0.4834 (11)	0.1005 (5)	0.03491 (16)	0.0448 (11)
H1	0.5378	0.1752	0.0173	0.054*
C8	-0.0525 (10)	-0.1027 (4)	0.17715 (17)	0.0419 (11)
C10	-0.2305 (11)	-0.0865 (5)	0.22338 (17)	0.0536 (12)
H10	-0.3048	-0.1575	0.2417	0.064*
C6	0.2110 (14)	-0.2340 (4)	0.1123 (2)	0.0557 (14)
H6	0.2677	-0.3146	0.1000	0.067*

supplementary materials

C11	-0.2940(12)	0.0332(5)	0.24137 (17)	0.0532 (12)
H11	-0.4150	0.0450	0.2716	0.064*
C3	0.5059 (13)	-0.1268 (5)	0.03889 (19)	0.0519 (13)
Н3	0.5720	-0.2050	0.0254	0.062*
C7	0.0286 (14)	-0.2250 (4)	0.1555 (2)	0.0546 (14)
H7	-0.0462	-0.2990	0.1715	0.065*
C2	0.5884 (12)	-0.0168 (5)	0.01436 (18)	0.0546 (14)
H2	0.7135	-0.0189	-0.0158	0.066*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02550 (13)	0.02861 (12)	0.06429 (16)	0.00102 (12)	0.00327 (14)	0.00180 (12)
Cu1	0.0322 (3)	0.0280 (2)	0.0525 (3)	0.0003 (2)	0.0052 (3)	0.0017 (2)
N1	0.0326 (18)	0.0320 (17)	0.0367 (15)	0.0001 (16)	0.0003 (16)	-0.0017 (12)
N2	0.0335 (18)	0.0320 (16)	0.0368 (18)	-0.0010 (16)	-0.0010 (16)	-0.0011 (14)
C5	0.026 (2)	0.0296 (18)	0.0385 (19)	-0.0005 (14)	-0.0077 (17)	0.0004 (14)
C12	0.037 (2)	0.052 (2)	0.042 (2)	0.001 (3)	0.001 (2)	-0.0009 (18)
C9	0.024 (2)	0.0300 (19)	0.040 (2)	-0.0022 (15)	-0.0092 (18)	0.0041 (16)
C4	0.036 (2)	0.038 (2)	0.052 (2)	0.010(2)	-0.015 (2)	-0.0114 (18)
C1	0.039 (2)	0.055 (3)	0.041 (2)	0.003 (2)	0.0016 (19)	-0.001 (2)
C8	0.036 (2)	0.038 (2)	0.052 (2)	-0.0063 (19)	-0.0157 (19)	0.0050 (19)
C10	0.046 (3)	0.059 (3)	0.056 (3)	-0.012 (3)	-0.002 (2)	0.022 (2)
C6	0.060 (3)	0.027 (2)	0.080 (3)	0.009 (2)	-0.029 (3)	-0.012 (2)
C11	0.042 (3)	0.073 (3)	0.045 (2)	-0.005 (3)	0.006 (2)	0.012 (2)
C3	0.046 (3)	0.052 (3)	0.059 (3)	0.014 (3)	-0.013 (3)	-0.023 (2)
C7	0.058 (3)	0.029 (2)	0.076 (3)	-0.005 (2)	-0.024 (3)	0.009 (2)
C2	0.043 (3)	0.077 (4)	0.044 (2)	0.013 (3)	-0.005(2)	-0.020(2)

Geometric parameters (Å, °)

I1—Cu1	2.5895 (6)	C4—C6	1.443 (6)
I1—Cu1 ⁱ	2.6030 (6)	C1—C2	1.404 (6)
Cu1—N2	2.100 (3)	C1—H1	0.9300
Cu1—N1	2.110 (3)	C8—C10	1.404 (6)
Cu1—I1 ⁱⁱ	2.6030 (6)	C8—C7	1.434 (6)
N1—C1	1.323 (5)	C10-C11	1.360 (7)
N1—C5	1.354 (5)	C10—H10	0.9300
N2—C12	1.324 (5)	C6—C7	1.341 (7)
N2—C9	1.361 (5)	С6—Н6	0.9300
C5—C4	1.409 (5)	C11—H11	0.9300
С5—С9	1.453 (5)	C3—C2	1.355 (7)
C12—C11	1.391 (6)	С3—Н3	0.9300
C12—H12	0.9300	С7—Н7	0.9300
С9—С8	1.402 (5)	С2—Н2	0.9300
C4—C3	1.392 (7)		
Cu1—I1—Cu1 ⁱ	106.715 (18)	N1—C1—C2	122.9 (4)
N2—Cu1—N1	79.66 (13)	N1—C1—H1	118.6

N2—Cu1—I1	135.30 (10)	С2—С1—Н1	118.6
N1—Cu1—I1	103.90 (10)	C9—C8—C10	117.0 (4)
N2—Cu1—I1 ⁱⁱ	100.05 (10)	С9—С8—С7	119.2 (4)
N1—Cu1—I1 ⁱⁱ	134.92 (10)	C10—C8—C7	123.8 (4)
I1—Cu1—I1 ⁱⁱ	106.715 (18)	C11—C10—C8	119.8 (4)
C1—N1—C5	117.6 (3)	C11—C10—H10	120.1
C1—N1—Cu1	129.6 (3)	C8—C10—H10	120.1
C5—N1—Cu1	112.6 (2)	C7—C6—C4	122.0 (4)
C12—N2—C9	117.1 (3)	С7—С6—Н6	119.0
C12—N2—Cu1	129.5 (3)	С4—С6—Н6	119.0
C9—N2—Cu1	113.2 (3)	C10-C11-C12	119.0 (4)
N1—C5—C4	123.2 (3)	C10-C11-H11	120.5
N1—C5—C9	117.8 (3)	C12—C11—H11	120.5
C4—C5—C9	119.1 (4)	C2—C3—C4	119.9 (4)
N2-C12-C11	123.8 (4)	С2—С3—Н3	120.1
N2-C12-H12	118.1	С4—С3—Н3	120.1
C11—C12—H12	118.1	C6—C7—C8	120.9 (4)
N2—C9—C8	123.3 (4)	С6—С7—Н7	119.6
N2—C9—C5	116.6 (3)	С8—С7—Н7	119.6
C8—C9—C5	120.1 (4)	C3—C2—C1	119.4 (4)
C3—C4—C5	117.1 (4)	С3—С2—Н2	120.3
C3—C4—C6	124.2 (4)	C1—C2—H2	120.3
C5—C4—C6	118.6 (4)		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*.

Fig. 1

Fig. 2

